Finely continuously differentiable functions
نویسندگان
چکیده
منابع مشابه
Finely Differentiable Monogenic Functions
Since 1970’s B. Fuglede and others have been studying finely holomorhic functions, i.e., ‘holomorphic’ functions defined on the so-called fine domains which are not necessarily open in the usual sense. This note is a survey of finely monogenic functions which were introduced in [12] like a higher dimensional analogue of finely holomorphic functions.
متن کاملModelling with twice continuously differentiable functions ∗
Many real life situations can be described using twice continuously differentiable functions over convex sets with interior points. Such functions have an interesting separation property: At every interior point of the set they separate particular classes of quadratic convex functions from classes of quadratic concave functions. Using this property we introduce new characterizations of the deri...
متن کاملMinimal Approximate Hessians for Continuously Gâteaux Differentiable Functions
In this paper, we investigate minimal (weak) approximate Hessians, and completely answer the open questions raised by V. Jeyakumar and X. Q. Yang. As applications, we first give a generalised Taylor’s expansion in terms of a minimal weak approximate Hessian. Then we characterise the convexity of a continuously Gâteaux differentiable function. Finally some necessary and sufficient optimality con...
متن کاملContinuously Differentiable Exponential Linear Units
Exponential Linear Units (ELUs) are a useful rectifier for constructing deep learning architectures, as they may speed up and otherwise improve learning by virtue of not have vanishing gradients and by having mean activations near zero [1]. However, the ELU activation as parametrized in [1] is not continuously differentiable with respect to its input when the shape parameter α is not equal to 1...
متن کاملJoint entropy of continuously differentiable ultrasonic waveforms.
This study is based on an extension of the concept of joint entropy of two random variables to continuous functions, such as backscattered ultrasound. For two continuous random variables, X and Y, the joint probability density p(x,y) is ordinarily a continuous function of x and y that takes on values in a two dimensional region of the real plane. However, in the case where X=f(t) and Y=g(t) are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expositiones Mathematicae
سال: 2008
ISSN: 0723-0869
DOI: 10.1016/j.exmath.2008.02.002